Ulm, Germany

Information Systems Engineering

Informationssystemtechnik

Bachelor's
Language: GermanStudies in German
Subject area: computer science
Qualification: Bachelor
Kind of studies: full-time studies
University website: www.uni-ulm.de
Engineering
Engineering is the creative application of science, mathematical methods, and empirical evidence to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
Information
Information is any entity or form that provides the answer to a question of some kind or resolves uncertainty. It is thus related to data and knowledge, as data represents values attributed to parameters, and knowledge signifies understanding of real things or abstract concepts. As it regards data, the information's existence is not necessarily coupled to an observer (it exists beyond an event horizon, for example), while in the case of knowledge, the information requires a cognitive observer.
Systems Engineering
Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability and many other disciplines necessary for successful system development, design, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as industrial engineering, mechanical engineering, manufacturing engineering, control engineering, software engineering, electrical engineering, cybernetics, organizational studies and project management. Systems engineering ensures that all likely aspects of a project or system are considered, and integrated into a whole.
Information
Private information is practically the source of every large modern fortune.
Oscar Wilde (1854–1900), Anglo-Irish playwright, author. Sir Robert Chiltern, in An Ideal Husband, Act 1.
Systems Engineering
It is hard to say whether increasing complexity is the cause or the effect of man's effort to cope with his expanding environment. In either case a central feature of the trend has been the development of large and very complex systems which tie together modern society. These systems include abstract or non-physical systems, such as government and the economic system. They also include large physical systems like pipe line and power distribution systems, transportation and electrical communication systems. The growth of these systems has increased the need not only for over-all planning, but also for long-range development of the systems. This need has induced increased interest in the methods by which efficient planning and design can be accomplished in complex situations where no one scientific discipline can account for all the factors. Two similar disciplines which emerged about the time of World War II to cope with these problems are called systems engineering and operations research.
Arthur D. Hall (1962) A methodology for systems engineering p. 5
Engineering
Engineering: The art of organizing and directing men, and of controlling the forces and materials of nature for the benefit of the human race.
Henry Gordon Stott. Presidential address, 1908, to American Institute of Electrical Engineers. Cited in: Halbert Powers Gillette (1920) Engineering and Contracting. Vol. 54. p. 97
Privacy Policy